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Introduction

This book was planned originally not as a work to be published, but as an excuse
to buy a computer, incidentally to give me a chance to organize my own ideas on
what measure theory every would-be analyst should learn, and to detail my
approach to the subject. When it turned out that Springer-Verlag thought that the
point of view in the book had general interest and offered to publish it, I was
forced to try to write more clearly and search for errors. The search was
productive.

Readers will observe the stress on the following points.

The application of pseudometric spaces. Pseudometric, rather than metric
spaces, are applied to obviate the artificial replacement of functions by
equivalence classes, a replacement that makes the use of “almost everywhere”
either improper or artificial. The words “function” and *“the set on which a
function has values at least €’ can be taken literally in this book. Pseudometric
space properties are applied in many contexts. For example, outer measures are
used to pseudometrize classes of sets and the extension of a finite measure from

an algebra to a ¢ algebra i1s thereby reduced to finding the closure of a subset of
a pseudometric space.

Probability concepts are introduced in their appropriate place, not con-
signed to a ghetto. Mathematical probability is an important part of measure
theory, and every student of measure theory should be acquainted with the
fundamental concepts and function relations specific to this part. Moreover,
probability offers a wide range of measure theoretic examples and applications
both in and outside pure mathematics. At an elementary level, probability-in-
spired examples free students from the delusions that product measures are the
only important multidimensional measures and that continuous distributions are
the only important distributions. At a more sophisticated level, it is absurd that
analysts should be familiar with mutual orthogonality but not with mutual 1n-
dependence of functions, that they should be familiar with theorems on con-
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vergence of series of orthogonal functions but not on convergence of
martingales.

Convergence of sequences of measures is treated both in the general Vitali-
Hahn-Saks setting and in the mathematical setting of Borel measures on the
metric spaces of classical analysis: the compact metric spaces and the locally
compact separable metric spaces. The general discussion is applied in detail to
finite Lebesgue-Stieltjes measures on the line, in particular to probability
measures.
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0

Conventions and Notation

1. Notation: Euclidean space

R" denotes Euclidean N-space; R = R'; R is the half line [0,00); RT is the
extended half-line [0,+<<]; R is the extended line [-o0,+o0]. The extended half-

lines and lines can be metrized by giving them the metric of their images under
the transformation s' = arctan s.

2. Operations involving oo

a(too) = oo if a>0,
= () if a=0,
=Foo If a<O.

Ifais ﬁnite, At oo = Too; if a =00, a+(+oo) = <o0; ifa= —00_ a+(—oo) = —00

3. Inequalities and inclusions

“Positive” means “2 0”; “strictly positive” means “ > 0.” The symbols < and O
allow equality. "Monotone" allows equality unless modified by “strictly.” Thus
the identically O function on R is both monotone increasing and decreasing, but
is not strictly monotone 1n either direction.

4. A space and its subsets

If S 1s a space, the class of all its subsets is denoted by 2. The complement of a
subset A of a space is denoted by A. If A and B are subsets of S, AnB is some-
times denoted by B=A. The indicator function of a subset A of S , defined on S as
1 on A and O on A4, is denoted by 1,. In particular, the identically 1 function 1
will be denoted by 1 and the identically O function 14 by 0.
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d>. Notation: generation of classes of sets

If A 1s aclass of subsets of a space, the classes Ag, A and A are, respectively,
the classes of countable unions, countable intersections, and complements of the
sets 1n A.

6. Product sets

If §,...,8,; are sets, §)x*XS,, 1s the product set

{($),...8%): S;€ S;, (I Sn)}.
If A; 1s aclass of subsets of §;, A, XX A, is the class
(A X XAy Aje A; (i <n))

of product sets. The corresponding definitions are made for infinite (not
necessarily countable) products.

7. Dot notation for an index set

“Bs” 1s shorthand for {B;, i € I}, where I is a specified not necessarily countable
index set. Unless the subscript range is otherwise described, “a finite sequence
B.” means the sequence B,,...,B,, for some strictly positive integer n, and “a
sequence B.” means the infinite sequence B,,B,,... . The notation 2B. means the
sum over the values of the subscript, and corresponding dot notation will be
applied to (not necessarily countable) set unions and intersections. If a. 1s a
sequence, the notation lim a. means lim, _,.c a,, and corresponding dot notation
will be applied to inferior and superior limits. When dots appear more than once
In an expression, the missing symbol is to be the same in each place. Thus if A.
and B. are sequences of sets, LU(A.NB,) 1s the union of intersections A,NB,,.

8. Notation: sets defined by conditions on functions

If fis a function from a space S into a space S' and if A' is a subset of §', the set
notation {s € S: f(s) € A'} will sometimes be abbreviated to {f € A’'}. Here f may
represent a set of functions. Thus if g,,...,g, are functions from S into S’ and if
B' i1s a subset of §'%?, the notation {s € S: [g,(5),....8n(s)] € B'} may be
abbreviated to {(g,....gn) € A'}.
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9. Notation: open and closed sets

The classes of open and closed subsets of a topological space will be denoted,
respectively, by G and F.

10. Limit of a function at a point

The limit of a function at a point depends somewhat on the nationality and back-
ground of the writer. In this book, the limit does not involve the value of the
function at the point. Thus the function 1{¢)}, defined on R as 0 except at the
origin, where the function is defined as 1, has limit O at the origin in this book
even though the function does not have a Bourbaki limit at the origin.

11. Metric spaces

Recall that a metric space is a space coupled with a metric. A metric for a space

S is a distance function d, a function from SxS into RY satisfying the following
conditions.

(a) Symmetry: d(s,?) = d(t,s).
(b) Identity: d(s,t) =0 if and only if s = ¢.
(c) Triangle inequality: d(s,u) < d(s,t) + & t,u).

A ballin § is an open set {s: d(s,sq) < r}; so is the center, r is the radius.

It 1s a useful fact that if 4 1s a metric for S and if ¢ is a strictly positive constant,
the function dAc 1s also a metric for § and determines the same topology as d.
That is, the class of open sets is the same for dac as for d. If 4 is a function from

SxS into RY and satisfies (a), (b), and (¢), the function dAc is a finite valued
function satisfying these conditions and can therefore serve as a metric.

12. Standard metric space theorems

The following standard metric space theorems will be used. Proofs are sketched

to facilitate checking by the reader that they are valid for the pseudometric
spaces to be defined in Section 13.

(a) A metric space (S,d) can be completed, that is, can be augmented by
addition of new points to be complete. To prove this theorem, let §° be the class
of Cauchy sequences of points of S. The space S' is partitioned into equivalence
classes, putting two Cauchy sequences s. and ¢. into the same equivalence class
if and only if lim d(s.,t) = 0. If s’ and ¢’ are equivalence classes, define d'(s’,t") =
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lim d(s.,t.) = 0. If s’ and ¢’ are equivalence classes, define d'(s’,t") = lim d(s.,t.) for
s. In s" and t. in ¢'. This limit exists, does not depend on the choice of Cauchy
sequences 1n their equivalence classes, and (S',d") is a complete metric space.
Define a function f from § into S’ by f(s) = s,s,s,... . This map preserves distance,
and if S 1s identified with its image in S', §' is the desired completion of S.

(b) A uniformly continuous function g from a dense subset of a metric space S
into a complete metric space S’ has a unique uniformly continuous extension to S.
To prove this theorem, observe that if s is not already in the domain of g, and if s.
IS a sequence 1n the domain of g, with limit s, the uniform continuity of g implies
that lim g(s.) exists and does not depend on the choice of s.. The value g(s) is
defined as this limit, and as so extended g is uniformly continuous on S. The
uniqueness assertion 1s trivial.

(c) If a complete metric space S is a countable union of closed sets, at least
one summand has an inner point. To prove this theorem, let US. be the union of a
sequence of closed nowhere dense subsets of S. There is a closed ball B, of radius
< 1 in the open set S,. Similarly there is a closed ball B, of radius < 1/2 in BN §,,
and so on. The intersection of these closed balls is a point of $ in no summand.
Hence the union cannot be §, that 1s, if S is the union of a sequence of closed sets,
at least one 1s not nowhere dense, and therefore has an inner point.

(d) If fe is a sequence of bounded continuous functions from a complete metric
space S into R, and if sup If.(s)| < +oo for each point s of S, then there is a number
Y for which the set (s € S: sup Ifs(s)l < Y}has an inner point. This theorem follows
at once from (c) because for each value of y the set in question is closed, and as vy
increases through the positive integers the set tends to S.

(e) A sequence f. of functions from a metric space (5,d) into a metric space
(§'.d") 1s said to converge uniformly at a point sy of S, if there 1s convergence at s,
and if to every strictly positive € there corresponds a strictly positive 0 and an
integer k, with the property that d '(fm(s),f,,(s)) < € whenevern 2 k, m 2k, and
d(s,so) < 0. An equivalent condition is that there is a point s’ of §' with the
property that whenever ¢. is a sequence in §, with limit sq, then lim fo(ts) = s°. If f5
is a convergent sequence of continuous functions from S into S', the limit function
f is continuous at every point of uniform convergence of the sequence. In fact, if
so is a point of uniform convergence, if €, 8, k are as just described, and if O is
decreased, if necessary, to make d '(fk(s)Jk(so)) < € whenever d(s,sp) < 0, then

(12.1)  d(fs)fs0) < () ful$) d' (fi$)fi(s0) +d'(filsolfiso)) < 3€

whenever d(s,59) < 0. Hence f is continuous at sg, as asserted.

(f) If a sequence f. of continuous functions from a complete metric space ($,d)
into a metric space (S',d’) is convergent, there must be at least one point of
uniform convergence. (Since this assertion can be applied to the restrictions of the
functions to an arbitrary closed ball in S, the set of points of uniform continuity of
the sequence, and therefore the set of continuity points of the limit function, is
actually dense in S.) This assertion is reduced to (c) as follows. For each pair of
strictly positive integers m, k, the set
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(12.2) ﬁn>m{s: d'(fn(s)’ fm(s)) S 1”‘}

1S a closed subset of S. When k is fixed and m increases, the union of these
closed sets is S. It follows that there is a closed ball Bg in one of these sets of
radius at most 1/k. If this argument is carried through with § replaced
successively by By,B,,...,the argument yields a monotone decreasing sequence B.
of balls whose intersection is a point of uniform convergence of the sequence f..

13. Pseudometric spaces

A pseudometric space is a space coupled with a pseudometric. A pseudometric
for a space S 1s a pseudometric distance function d, a function from $xXS§ into
Rt that satisfies 11(a) and 11(c), but 11(b) is weakened to

(11b’) a(s,s) = 0.

There are two approaches to a pseudometric space (3,d). The most common
approach 1s to define a space S* of equivalence classes of subsets of §, putting
two points s and ¢ of S in the same equivalence class if and only if d(s,f) = 0. If
s* and t* are equivalence classes define d*(s*,t*) as d(s,¢t), for s in s* and ¢ 1n r*.
This definition does not depend on the choice of s and ¢ in their equivalence
classes, and d* is a distance function making'S* a metric space.

A second approach, used in this book, is to stay with the pseudometric space,
making the same definitions as formulated for metric spaces: open and closed
sets, separable spaces, complete spaces, and so on. Note that if a sequence of
points of a pseudometric space is convergent to a point, the sequence is also
convergent to every point at zero distance from that point, and that therefore if a
point i1s in an open (or closed) set of a pseudometric space every point at zero
distance from it is also in that set. The theorems and proofs of the theorems in
Section 12 remain valid for pseudometric spaces. It may seem that in fact there
1s not much difference between handling S and $* except that $* is simpler, but

in fact in many measure theoretic contexts, the pseudometric space is less
clumsy.
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Operations-on Sets

In this chapter, certain relations between and operations on subsets of an
abstract space are described. When numbered relations are paired, as in (1.1),
each relation of the pair yields the other relation when the sets involved are
replaced by their complements. Proofs of easily verifiable assertions are
omitted.

1. Unions and intersections

If A. and B. are collections of subsets of a space S,

(1.1) (LAs) =nAe, (ML) =UA,,

(1.2) (UsAs)N(UeBy) = Vs, t (AsNBy),
(NsAsII(NBr) = ~s,t (AsUBy).

Obviously 14~B=14lp, 14=1-14 = 1414 (mod 2), and

(1.3) laup=14A+ 15— 1413.

2. The symmetric difference operator A

In this section A, B, C, and D are subsets of a space S. The symmetric difference
AAB is defined by

(2.1) AAB = (A-B) LU (B-A)
or, equivalently,

(2.2) laag =14+ 1 (mod 2).
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The latter form provides easy proofs of some of the relations listed below.
Obviously

(2.3) AAD = A, AAS =A,AAA=0,(AAB) =AAB, AAB=AABc AUB.
The symmetric difference operator i1s commutative and associative:
(2.4) AAB = BAA, AA(BAC) = (AAB)AC,

and therefore parentheses can be omitted in expressions of the form AABACA--- .
The equality AAC = AABABAC yields the useful triangle inclusion relation

(2.5) AAC c (AAB)U(BAC).

The symmetric difference operator satisfies

(2.6) (AAB)~C = (AnC)A(BNC), (AABYUC = (AUC)A(BNC),
and if A. and B. are collections of subsets of S,

2.7)  (UsAg) A (UrBr) € UAAAB.), N(AAB.) C (NeAs) A (UtBy),
(2.8) (NsAg) A (MBy) < U(AAB,).

IfA,,....,A, are subsets of S,

lua, = )) lA; - 2 lAimA. ++ (1) lAlr\...r\An.
12l iI<j J

(2.9)
l~a, = 214, - 2 lA0A; + b 40 VINUINEY W8
i 21 i<
When n = 2, both equalities reduce to (1.3). Each equality can be proved by
induction, or, more directly, by checking it at those points in A; for exactly m
values of j, for m = 0,...,n. Each equality reduces to the other when the sets in-
volved are replaced by their complements.

3. Limit operations on set sequences

If A. 1s a sequence of subsets of a space §, define

o0

(3.1) limsup A= _ U Aj, liminfAc=U_) N A
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The superior limit is the set of those points in A, for infinitely many values of n;
the inferior limit is the set of those points in A, for all but finitely many values
of n. The inferior limit is a subset of the superior limit, and if there is equality
with common limit set A, the sequence A. converges to A, written lim A. = A.
The following limit properties for sets are analogous to those for numbers,

because they correspond exactly to those for indicator functions, written at the
end of this section.

(a) A monotone increasing sequence of sets converges to the union of the sets; a
monotone decreasing sequence of sets converges to the intersection of the sets.

(b) If B. is a subsequence of A., then B. converges whenever A. does, because

(3.2) lim inf A. € lim inf B, € lim sup B. € lim sup A..
Since
(3.3) lim inf A. = (lim sup A.) ,

(C) the sequence A. converges to A when A. converges to A. Furthermore, for
sequences A., B. of sets,

lim inf (A+UB,) D (lim inf A.) U (lim inf B,)

(3.4)

lim sup (A.wB.) = (lim sup A.) L (lim sup B.),

lim inf (A.NB.) = (lim inf A.) N (lim inf B,),
(3.5)

lim sup (A «NB.) < (lim sup A.) N (lim sup B.).
Hence,

(d) whenever sequences A. and B. converge respectively to A and B, the
sequences AJJB. and A.N\B. converge respectively to AUB and ANB.

The equality
(3.6) UA. - mo - Un (An AAn+| ),
for a sequence A. of sets, is useful in convergence studies, because (3.6) implies

(3.7) lim sup A. — lim inf A. = lim sup, 00 (AnAA 4 ).
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Set sequence limit properties in terms of indicator functions. If A. is a
sequence of sets, the functions lim sup 1 A and lim inf 14 are respectively the
indicator functions of the sets lim sup A. and lim inf A.. Thus the sequence A.
converges to A if and only if the corresponding sequence of indicator functions
converges to 14.

4. Probabilistic interpretation of sets and operations
on them

In the application of mathematical probability to nonmathematical contexts, a
space of points corresponds to a class of possible observations made in some
real context, for example, heights of humans in a specified country, positions of
stars, possible outcomes of tossing a coin twice, times of auto accidents on a
specified mghway. The subsets of the space, events in the applications, are de-
termined by conditions in the real contexts. For example, in the last mentioned
application, one event is the class of accident times during the hours of daylight.
The union operation on sets corresponds to or for events; the intersection
operation for sets corresponds to and. It will be seen in later chapters that
mathematical probability (which must be distinguished from the
nonmathematical variety) is a certain specialization of measure theory,
distinguished by its own terminology and its field of nonmathematical
applications. On the one hand, mathematicians were computing probabilities
and expectations, on the other hand mathematicians were computing volumes
and masses, and the two fields did not come together until this century. In fact
some probabilists resented the invasion of their juicy domain by dry
mathematical rigor, and even now almost all probabilists write in the traditional

dialect of their subject.
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Classes of Subsets of a Space

1. Set algebras

Definition. A class S of subsets of a space § is an algebra if the following
conditions are satisfied.

(a) ODeS.
(b) Theclass S is closed under complementation: if Ae Sthen Ae S.
(c) Theclass S is closed under finite unions: finite unions of sets in S are in

S.
(c) The class S is closed under finite intersections: finite intersections of sets
in S are in S.

Under (b), conditions (c) and (c') are equivalent, in view of Equation I(1.1). If
A. is a finite or infinite sequence of sets in an algebra S, their union, which may
or may not be in the algebra if the sequence is infinite, can be expressed as the

disjunct union of a sequence of sets in S, each of which is a subset of the
corresponding term of A.:

(1.1) A|VAU - = A U(Ar-Ay) U [Ay-(A)LAY))L -

Definition. An algebra S of subsets of a space S is a O algebra if S contains
the limit of every monotone sequence of its sets. The pair (S,S) is then a
measurable space, and the sets in S are measurable.

Application of complementation shows that this defining condition of a G
algebra, as distinguished from an algebra, is fulfilled even if it is specified as

fulfilled only for increasing (or only for decreasing) set sequences. If A. is a
sequence of sets 1n a G algebra, the limit sets lim sup A. and lim inf A. are also
In the ¢ algebra..

The smallest algebra of subsets of a space S is the pair of sets (9,5); the
largest algebra is 25. Both these algebras are & algebras.
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2. Examples

(a) Finite unions of right semiclosed intervals of R". A right semiclosed
interval of R 1s either the empty set or a subset of R of the form

(2.1) {se R a<s <b) (o0 £ a < b < +00).

The complement of such an interval is either a right semiclosed interval or
the disjunct union of two such intervals, and the intersection of two such
intervals is another one. The class of finite unions of these intervals is therefore
an algebra. This algebra i1s not a ¢ algebra because, for example, it does not
contain the open interval (0,1) =), (0,l-1/n].1

The right semiclosed intervals of RY for N >1 are defined as the N-fold
products of right semiclosed intervals of R. For N 2 1 the class of finite unions
of these intervals is an algebra, but not a ¢ algebra.

(a") In Example (a), replace R by the set of rational numbers. With this choice
instead of R in (2.1), the class of finite unions of these intervals is still an

algebra but not a ¢ algebra.

(b) Classes of 0,1 sequences. For n = 1,2,... let S,, be the space of n—tuples of
O's and 1's, and define § = §;x §;x -, the space of infinite sequences of 0's and

I's. Let x,; be the nth coordinate function of S. Under the map taking a point of
Sn into the subset of § with that point as initial n-tuple, the algebra S, of all
subsets of S, maps into a set algebra S ,;' of subsets of S. The union \U S.' of all
these algebras is itself an algebra S' of subsets of S. The algebra S,,’ is the al

gebra of sets specified by conditions on x,,...,x, the algebra S' is the algebra of
sets specified by conditions on finitely many coordinate functions of S. The
algebra S' 1s not a 0 algebra because, for example, A, = {x,=1} € S,;' < S/, but
\UA. is not in S'. The set algebra §' has the property, to be applied in Section

IV.14,that if A in S’ is a disjunct countable union UA. of sets in S', then all but
a finite number of the summands are empty. Equivalently, phrased in terms of
the remainder sequence {A-u A., n21}, a decreasing sequence B. of non-

empty sets in S' has a nonempty limit. To prove this assertion about decreasing
sequences, observe that by hypothesis each set B, is specified by conditions on
a finite number of coordinates, say the first a,, coordinates. (Note that if B, is
specified by conditions on the first a, coordinates then B,; can also be specified
by conditions on the first a,;' coordinates for a,' > an.) The assertion to be
proved is trivial if the sequence a. 1s bounded. If this sequence is not bounded, it
can be supposed that the sequence is monotone increasing - if necessary replace

each value a, by a,v''*va,. For each k, the set of initial g;-tuples of points of By
is not empty and decreases as n increases, to some nonempty set Cy of ag-tuples.

Moreover the aj-tuples in Cy are the initial ag-tuples of C,,, for m >k. Thus the
sequence C.determines a nonempty set that is a subset of every set By, that is,
NB. 1s not empty, as was to be proved.
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Observation for later use. If, more generally, the space S, 1s a metric space,
if §=38x3§;x, and if x, is the nth coordinate function of §, a trivial adapta-
tion of the argument just used yields the following: if B. is a decreasing
sequence of nanempty subsets of S, with B, = {(xy,.. g ) € B,'}, where B,' is a
compact subset of S,"* with a. some sequence of posmve integers, then NB. is
not empty. This result 1s trivial unless the sequence a. is unbounded. It can be
assumed that a. is an unbounded increasing sequence (if not already increasing,
choose a subsequence of B. for which the corresponding subsequence of a. is

increasing), and the rest of the argument for the special case is carried through
without change.

3. The generation of set algebras

Let Sy be a class of subsets of a space S, and let I" be the class of those algebras
of subsets of S that include S¢ Denote by Gy(So) the class of sets in every
algebra in the class I'. Then 0p(S¢) is an algebra, the smallest one including all
the sets of Sy. Similarly there is a smallest G algebra 0(S,) including all the sets

of Sy, the intersection of all such o algebras. The algebras 6y(So) and &(S,) are
generated by S,. Obviously

0[06S0)]) = 0(Se) = 0[0(S)], Tl00(S0)] =T0(S0).

If A,,...,A, are subsets of a space S, they generate a partition of S into 27
pairwise disjoint possibly empty cells, the intersections B;~--nB,, where each
set Bj is either A; or A'j. The algebra 0y(A.) is the class of finite unions of these
cells. In general, if Sy is an arbitrary class of subsets of §, the algebra Go(S¢) is
the class of finite unions of finite intersections of the members and complements
of members of Sy. There is no such simple representation of o(S,).

4. The Borel sets of a metric space

A metric space is a pair (S,d) consisting of a space S and a distance function d.
The specification of d is usually omitted if it is irrelevant to the discussion or
obvious from the context. The distance function for the product of finitely many
metric spaces is to be understood to be defined by the Euclidean formula:
square root of the sum of squared distances for the factor spaces.

Every closed set in a metric space § is a countable intersection of open sets:
Fc G§. In fact if A is closed, the set {s € S d(s,A) < 1/n} is open and

(4.1) A= {se S d(sA) < ln).
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Complementation yields the fact that G < Fg, that is, every open set in a
metric space is a countable union of closed sets. These two inclusions imply

first, that 6(G) D F and therefore o(G) > o(F), and next that o) > G and
‘therefore that o(F) > &(G). Hence &(F) = o(G).

Definition. The class B(S) of Borel subsets of a metric space S is the ©
algebra 0(G) (= o(F )).

In dealing with a measurable space (S,S) for which § is a metric space it will
always be assumed, unless stated otherwise, that S=B(S). The reasoning that
led to the equality o(F) = o(G) for a metric space S shows that if S is so large
a class of Borel subsets of S that 6(S) includes F or G, then o(S) = B(S). For
example B(R) is generated by the class of open intervals, also by the class of
closed intervals, also by the class of right semiclosed intervals, also by the class

of semi-infinite intervals, and so on.

Relativization of Borel sets. If A is a subset of a metric space (5,d), if A is
metrized by restricting d to pairs of points of A, and if Ag C A, then Age B(A) if
and only if Ay is the intersection with A of a set in B(S), that is, in the obvious
notation, B(A) = B(S)N\A. In fact the class of sets in B(A) that are intersections
with A of a set in B(S) is a ¢ algebra relative to A and includes the subsets of A
that are open relative to A, because these are the intersections with A of open
subsets of S. Hence B(A) < B(S)NA. In the other direction, B(S)NA < B(A)
because the class of Borel subsets of § meeting A in a Borel set relative to A
includes the open subsets of S, is a ¢ algebra, and is therefore B(S).

In particular, if A is a Borel subset of S, then a subset of A is Borel relative to
A if and only if it is Borel relative to S. Thus, for example, a subset of a line 1n
R? is a Borel set relative to the line if and only if the subset is a Borel set
relative to the plane.

5. Products of set algebras

Fori=1,....n, let S; be an algebra of subsets of a space §;. Let §=5,xx§,, be
the product of these spaces. In the following, “product set” will always mean a
set in the class S;x-X S, of product sets A;x-XA , with A; in S;. Observe that
the intersection of two product sets is a product set, and that the complement of
a product set is a finite disjunct union of product sets. It follows that the class of
finite unions of product sets is an algebra, necessarily 0o(S %' X Sp).

In particular, if each space S; is R and if each algebra S; is the algebra of
finite unions of right semiclosed intervals of R, then GyS;x X S,) is the
algebra of finite unions of right semiclosed intervals of R¥. The o algebra B(R")
is generated by this algebra, also generated by the class of N fold products of the
one-dimensional Borel sets, also by the class of N fold products of classes that

generate B(R), for example, by the class of N-fold products of open intervals of
R, or of right semiclosed intervals of R, and so on.
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Returning to general factor spaces S,...,5,;, observe that
(3.1) O(S1x>8 ) = o(0(S | x-X(Sp)).

In fact, trivially, the right side is at least as large as the left. Conversely it is
sufficient to show that the left side is at least as large as the right by showing
that 1t includes o(S )< XXS,). Fix A; in S; for all i >1. The class of sets A; In
o(S ;) for which the product setA x4, is In 6(S1x*X S,,) includes $,,isa ¢
algebra, and i1s therefore 0(S;). Thus the left side of (5.1) includes
o(S | xS,x-S,. Go on by induction to finish the proof of the stated inclusion.

Cross sections of multidimensional sets. If A is in 6(S,x X S,), denote by
A(s) the section of A with first coordinate s:

A1(S) = {(59y.ees8p): (5,59,....5n) € A}.

This set is in the set © algebra of subsets of S,x xS, generated by S,x X8 ,
because the class of sets A for which this is true contains S,x>X8, andisa ¢

algebra of subsets of S. The corresponding assertions are true if more than one
coordinate is fixed.

Right semiclosed intervals in spaces of infinite dimensionality. Section 2,
Example (a), can be extended to an arbitrary infinite (not necessarily countable)
dimensionality. For every point i of an arbitrary index set /, let S; be a copy of
R and let S; be the algebra of finite unions of right semiclosed intervals of ;.
Define the space S as the class of all functions from / into R. Let x; be the ith
coordinate function of S. If i,,...,i,, are index points and if A is a right semiclosed
interval of R", the set {(x; ,....; ) € A} 1s an n-dimensional right semiclosed
interval of §. The algebra of finite unions of all such finite dimensional intervals
is the infinite dimensional version of the algebra of finite unions of right
semiclosed intervals of RV,

6. Monotone classes of sets

Monotone class definition. A class S of subsets of a space § 1s a monotone
class if S contains the limit of every monotone sequence of its sets.
To each class S of subsets of a space corresponds a smallest monotone class

M(S) containing S (cf. the corresponding proof for algebras in Section 3). The
class S generates M(S).

_ Theorem. Let S be a class of subsets of a space. Suppose that M(S) includes
S and includes either the finite unions or the finite intersections of members of
S.Then M(S) = &(S). In particular, M) =&S) if S is an algebra.
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Proof. Under the hypotheses of the theorem, the class M(S) contains the
complements of its sets, because the class of sets in M(S) whose complements
are in M(S) is a monotone class containing S and therefore must be M(S). To
prove that M(S) is closed under finite unions if M(S) contains the finite unions
of sets in S, let B be in S. The class I'g of sets A in M(S) for which AUB is in
M(S), contains S, and is a monotone class. Hence I'g = M(S). Furthermore, the
class of sets in M(S), whose union with each set in M(S) is in M(S), was just
proved to contain S, and is a monotone class, so is M(S). Thus M(S) is an
algebra, necessarily a ¢ algebra because of the monotone class property, and
therefore M(S) = o(S). This conclusion follows in the same way iIf it is

supposed that M(S) contains the finite intersections rather than finite unions of
members of S.

Generation of the Borel sets by monotone sequential limits. According to
Theorem 6, the class of Borel sets of a metric space S is the monotone class
generated by the open sets, equivalently the monotone class generated by the
closed sets.

The classes in the inclusion relations

(6.1) G cG§c Gyg = Gg5 C

are all Borel sets but in most applications the union I" of these classes does not
contain all the Borel sets.

Example: S = R. In this case it can be shown that the monotone sequence
(6.1) is strictly monotone and that I" is a strict subclass of B(R). Moreover, 1t
can be shown that the monotone sequence

(6.2) [[clscIggc gy <

is strictly monotone and that the union of these classes is a strict subclass of
B(R). This procedure can be continued (transfinite induction) to obtain a well-
ordered uncountable strictly increasing succession of classes of Borel sets
containing all the Borel sets of R. (A corresponding approach starts with the
sequence

instead of (6.1).) This analysis of Borel sets will not be used in this book.
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The point of this book is the study of countably additive set functions, and the
preceding chapters have set up the appropriate context by providing an

introductory analysis of classes of subsets of an abstract space. This chapter
introduces the set functions to be studied.

1. Set function definitions

Let A be a function from some class S of subsets of a space S into R.

(a) A is monotone increasing [decreasing] if MA) £ MB) [A(A) 2 A(B)],
whenever AcB and both sets are in S.

In (b) and (c) it is supposed that @ € S and that AM(@) = 0.
(b) A is finitely [countably) subadditive if

(1.1) A(UA.) € 2 NA.)

whenever A. is a finite [infinite] sequence of sets, that, together with their union,
are in S, and -eo and +¢o do not both appear in the summands.

(c) Ais finitely [countably) additive if (1.1) is true with equality whenever A. is
a disjunct finite [infinite] sequence of sets that, together with their union, are in
S, and - and +eo do not both appear in the summands.

In checking finite additivity or subadditivity, it is sufficient to consider
unions of only two sets.

Measures and signed measures. A countably additive set function from an
algebra into either [-eo,+00) Or (-00,400] is a signed measure, a measure if the
range space is RY. If A is a measure defined on a G algebra S of subsets of S,
the triple (S5,S,A) is a measure space, and the sets in S are measurable, or A
measurable if it is necessary to identify the measure. In particular, if A(S)=1, a
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measure space 1S a probability space, and A is a probability measure. In
probability contexts, the measurable sets are sometimes called events.

A measure space S and its measure A are finite if A(S) < +o0, and are O finite
if S 1s a countable union of sets of finite measure. In view of the representation
II(1.1) of a countable union as a disjunct countable union, it is no further
restriction on the condition for ¢ finiteness to demand that the union be a dis-
junct union.

Null sets, carriers, and supports. A measurable set of measure O is null or,
more specifically, A null. An assertion about points of a measure space holds
almost surely, or almost everywhere, on the space, if true up to a null set, i1n the
sense that the set where the assertion is false is a null set. A subset of a null set
may not be measurable and therefore may not be a null set but (see Section

IV.1) the domain of definition of a measure can be extended to remove this
somewhat awkward complication. A measure is carried by a set if the set is
measurable and has a null complement.

Borel measures. A Borel measure is a measure A defined on the class of
Borel subsets of a metric space. If the space is separable there is a largest open A
null set, the union of the A null balls having centers at the points of a countable

dense set and having rational radii. The complement of this open set 1s the
smallest closed carrier of A. This uniquely defined closed carrier is the closed

support of A.

Monotonicity and subadditivity. Finite additivity of a positive set function
A, defined on a set algebra S, implies that A is monotone increasing, because if
A and B are sets in S and if A c B,

(1.2) AB) = A(A) + AM(B-A) > MA).

Furthermore this set function A is finitely subadditive, because if sets C and D
are in S,

(1.3) MCUD)=MC)+ MD-C) < AC) + MD).

A slight extension of the argument, applying equality II(1.1), shows that a
measure on a set algebra is countably subadditive.

Countable additivity. The added condition of countable additivity imposed
on a finite valued finitely additive set function A, defined on an algebra S, can
be given the following equivalent forms.

(a) For a disjunct sequence A. of sets in S, with union in S, (1.1) 1s true with
equality.
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(b) For an increasing sequence B. of sets in S with limit B in S, lim A(B.) =

A B).
(c) For a decreasing sequence B. of sets in S, with limit @, lim MB.) = 0.

For example, to see that (a) implies (b), write B as a union:
B = By A | (Bns1-Bp)

Conversely (b) implies (a) because a countable union is the limit of the
monotone 1ncreasing sequence of partial unions.

The added condition of countable additivity imposed on a finitely additive,
not necessarily finite valued positive set function, defined on an algebra S, can

be given the following equivalent forms: (a) and (b) as above, but (c) is
replaced by

(c') For a decreasing sequence B. of sets in S with limit @, lim A(B.) =0 if
M B)) < 4o,

2. Extension of a finitely additive set function

The following lemma will be useful 1n the construction of product measures on

product spaces. The properties of S in the lemma are modeled on the properties
of classes of product subsets of the product of a finite number of spaces.

Lemma. Let Sy be a collection of subsets of a space S. Suppose that the
intersection of two (and therefore every finite number) of sets in S is in Sy, and
suppose that the complement of a set in S is a finite disjunct union of sets in S,
so that Gy(Sg) is the class of finite unions of sets in Sy. Let Ay be a finitely

additive set function on Sy,with values in either (-oo,+00] or [-oo,+o0). There is
then a unique finitely additive extension of Ag to Gy(So).

Proof. If A is a finite union of sets in §, A can be expressed as a finite disjunct
union of sets in §, say A = UA.. Define A(A) = 2 M(As). To prove that A as so
defined is independent of the choice of representation of A as a finite disjunct

union of sets in 8y, suppose that \UB. is another finite disjunct union of sets in
So with union A. Then

A=UA.=UB,. = Uj,k AjﬁBk,
and therefore
2 Ao(As) = Zj 2 AoAjnBy) = 2 Ej AoAjnBy) = 2, Mo(Bo),

as was to be proved. Thus Ay has been given the required extension, obviously
finitely additive.
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3. Products of set functions

The following theorem will be useful, for example, in developing area in two
dimensions from length in one dimension.

Theorem. For i=1,...,n, let S; be an algebra of subsets of a space S;, and
define Sg= S%X X8y, 8=06¢(So). IfA; is a finitely additive positive set function
on S;, for i = 1,....n, then there is a finitely additive set function A on S for
which

(3.1) A(A ¢4 ) = 1':] M) (A€ Sii=1,..n).

Proof. Define A by (3.1) on S. According to Section I1.5, each set in S can be
expressed as a finite disjunct union of sets in §y. Define A on such a union by
additivity. The only question is whether this definition gives a value
independent of the representation of the given set as a disjunct product set
union. In proving the desired independence, it is sufficient, according to Lemma
2, to prove this independence for product set unions in S§y. The proof is by
induction. The independence is trivial when n=1. If n> 1, suppose independence
has been proved for n—1, and suppose that

k
(3.2) Al)('”XAn - U] (B.)(C.),

where B; € 81X X8 .1, C; € S, for i=1,...k and the union is disjunct. According
to the induction hypothesis, there is a finitely additive set function v on
Co(S ¢ 8 5,.)) satisfying

n-1
(3.3) V(D x*XDp.y) = l:l AD.), (Dje S, i=1,...n-1).
It is to be proved that

k
(3.4) V(A X XA 1) Ay(Ap) = ; V(B;) A (C)).

According to Section IL.3, there are 2% pairwise disjoint sets in S,,, with the
property that each set C; is a disjunct union of some of these sets. If in each term
B;xC; in (3.2), the set C; is expressed in terms of these sets, B;XC; is thereby
expanded into a disjunct union of product sets with common first factor set B;.
The ith summand in (3.4) is thereby expanded into several summands that have
sum V(B;))A,(C;), because A,, is additive. If this expansion is carried through for
all i, the value of the sum in (3.4) is not changed. Suppose then that this
expansion has already been carried through, yielding a union in (3.2) in which
two sets C, and C; are either identical or nonintersecting. If identical, the terms
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B, xC,, BgxCg can be combined into a single product set (B, UB;)xC,. When the
terms in (3.2) are combined in this way, the sum in (3.4) is unchanged, because
v is additive. After having made these changes, C,,C,,... are pairwise disjoint
and their union must be A,,, whereas B; must be A ;xxXA ,,_, for all i. The right
side of (3.2) has become UAX*XA ,,.iXC , and (3.4) is now trivial.

4. Heuristics on ¢ algebras and integration

Let I,,..1, be pairwise disjoint intervals of R with union an interval I. Let f be a
function from / into R, with value g; on I;. The Riemann integral of fon I'is X;
a; l(Aj), where l(Aj) is the absolute value of the difference between the
coordinates of the endpoints of A;. Riemann integration theory on R is based on
this integration of functions constant on intervals. In fact the Darboux upper and
lower sums for a function g (see Section VI.20), which approximate the
Riemann integral of g, are the Riemann integrals of functions constant on
intervals. Integration in the context of measure theory involves analogous sums,
but is based not on functions constant on intervals, but on functions constant on
sets of some O algebra of sets. The details of this integration will be given later,

but in this chapter preliminary definitions of integrals will be given in special
contexts to clarify the general case.

5. Measures and integrals on a countable space

Suppose that S is a countable space, written as a finite or infinite sequence s.,
and define S=25. A measure Aon S is determined by its values on singletons: if

M{si})=pi then

MA)= 2 pi
seA

Observe that if Ep. = +oo, but if each summand is finite, the sequence B. with
Bn,= {sn.Sn+1,...} is a decreasing sequence of sets with limit @, even though
MB,) = +c for all n. This example justifies the Section 1(c') finiteness
condition.

If f1s a function from this countable space S into R, it is natural to define the
integral of fon § as Zf{s.)p. if the sum converges absolutely, and this in fact is a
special case of the final definition of an integral to be given in Section V1.4.

Adaptation of integrands to G algebras. Let S be the finite or infinite se-
quence s. with at least two points, define S as the ¢ algebra of those subsets of §
that contain either both or neither of the two points sy, 5,5, and let p,,p;,... be
positive but not necessarily finite numbers. Define A({s;j}) =p; for j > 2, and

define A on the two-point set {s,,5,} as p,. These definitions, together with
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countable additivity, determine A on S. If f is a function from S into R*, and if
f(s1)#f(s,), there 1s no natural definition of the integral of f with respect to A on
S, because A 1s not defined on the singletons {s,} and {s,}. The difficulty is that,
as far as S is concerned, the point pair {s;,5,} is an indivisible atom of the
measure space. Thus integration theory in this context is forced to consider only
those integrands f with f(s,)=f(s,); for such a function, the natural definition of
the integral i1s

5.1) Jm = flspa + 3, A5

when the series converges absolutely. The point is that an integrand must
assume each of its values on a measurable set. This fact leads to the general
concept of a function adapted to the class of measurable sets, a measurable
function, to be defined and discussed in Section V.1. At the present stage the
following definition is adequate.

Measurability definition for a function with a countable range space. Let
(5,.25) be a countable measurable space, and consider functions from a
measurable space (S, S) into S’ Such a function y is measurable if it assumes
each of its values on a measurable set, that is, if @' is a point of S ' then {y = a'} €
S, equivalently, {y € A’} € S whenever A’ is a subset of §". The function fin the
preceding paragraph, from S into RY, is measurable if and only if f(s|)=f(s,).

If (S,S) is provided with a probability measure, a measurable function is a
random variable in probability terminology.

6. Independence and conditional probability (preliminary
discussion)

Let (§,S,P) be an arbitrary probability space. All subsets of § considered below
are in S, that is, are measurable.

Independence of sets. Sets A,,...,A, InS are mutually independent 1f
(6.1) P{B\~-nBy} = P{B,}P{Bp},

for every one of the 2" choices of the n-tuple B,,....B,, where each set B; 1S
either A; orA;.

This mutual independence implies that for each choice of B., these sets are
also mutually independent. Moreover the sets of any subcollection of A. are
mutually independent. (For example, write (6.1) with B, replaced by its
complement, and then add the new equation to the original one, to find that
Ai,...,An-1 are mutually independent.). In particular, sets A, and A, are mutually
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independent if P{A;A4,} = P{A,}P{A,} because in this special case trivial eval-
uations show that the pairs (A,4,), (A,.4,), and (A,,4,) also satisfy this product
relation. A null set is independent of every set, as is also the complement of a
null set.

Infinitely many sets are mutually independent if the sets of every finite
subcollection are mutually independent.

Mutual independence of ¢ algebras. The o algebras of a collection of ©
algebras of measurable sets are mutually independent if, whenever a set is
chosen from each o algebra, these sets are mutually independent. Let S,....,S4
be mutually independent ¢ algebras of measurable sets. Then o(8,,5,) and
0(S3,84) are mutually independent o algebras. To see this, let B be the
intersection of a set in S, with one in §4. The class I" of sets in 6(S;,S,)
independent of B is a monotone class closed under finite disjunct unions and
complementation, and I'" includes every intersection of a set in S; with one inS,
Since finite unions of such intersections can be written as disjunct unions of the
same type, and in fact constitute a set algebra, I' must be 0(S,,S,). Thus each set
in 6(8,,S,) is independent of B. An application to 6(S,,S,4) of the reasoning just
used shows that every set in 6(S,,S,) is independent of every set in 0(8,,S,), as
was to be proved. More generally, an obvious further elaboration of this proof
shows that if {S;, i e/} is a family of mutually independent ¢ algebras, and if
{Iq, 0L € 2} are disjoint subsets of the index set /, then {0{ S;, iely}, o € S}
are mutually independent o algebras.

Independence of random variables. In particular in this discussion let S’ be
a countable space, and consider random variables (= measurable functions) from
S into S’ as defined in Section 5. The random variables of a collection of these
random variables are mutually independent if, whenever y;,...,y, are finitely
many random variables in the collection and a,',...,a," are points of S, the sets

{y1=a,'}.....{yn=a,']} are mutually independent. This condition implies that if
A/,....A,' are subsets of § the sets {y, € A,'}....{yn € A,'} are mutually
independent. The general definition that underlies these special cases (keeping
S ' countable at this stage, however) is the following. If y. is any collection of
random variables, measurable sets of the form {y, € A'}, with y, in the
collection, and A' a subset of S', generate a ¢ algebra, denoted by o(y.), and all
questions of independence of random variables are referred to the corresponding
G algebras. Thus two random variables y and z are mutually independent if and
only if o(y) and 0(z) are mutually independent ¢ algebras; similarly two
families { y.} and {2} of random variables are mutually independent if and only
if (y.) and 0(z.) are independent ¢ algebras, and so on. In particular, the sets of

a collection of measurable sets are mutually independent if and only if their
indicator functions are mutually independent.

Independent events. Recall that in probability applications, measurable sets
are sometimes called “events.” Nonmathematical events that are independent of
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each other in a nonmathematical sense correspond in mathematical models to
mathematically independent measurable sets. For example, in the coin tossing
analysis to be given in Section 9, the events heads on the first toss and tails on
the third toss are thought of as independent real-world events, and the

corresponding measurable sets in the mathematical model are mathematically
independent.

Conditional probability. Let (S,S,P) be a probability space, and let A be a
measurable nonnull set. A new probability measure B=+ P{B|A} (read “the
conditional probability of B given A”’) is defined by

(6.2) P{B|A} = P{BAA}/P{A).

In simple contexts one can interpret such conditional probabilities for fixed A as

defining a new context, based on replacing S by A, replacing S by the class of
measurable subsets of A, and replacing P by the restriction of P to this class,
normalized to make the restriction a probability measure of sets B. However, In
most contexts it is preferable to keep S and S, so that (6.2) defines a new
probability measure on (§,S), carried by A. Observe that sets A and B are
mutually independent if and only if either A is null, or A i1s not null and
P(BlA}=P{B}. The innocent looking conditional probability concept, when
formulated in a more general context (see Section XI.2), has had a profound
influence and unexpected mathematical applications, both inside and outside
probability theory.

Expectation and conditional expectation. If S={s{,52,...} 1S a countable
space, and if a probability measure is defined on the G algebra 2° by setting
P{s;}=p; with p; 20 and Xp. = 1, the integral of a numerically valued function f
on S, defined in Section S, is commonly written E{f} by probabilists <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>